Nanowire-plasmonic photocatalysts and thermal emitters

Thang Duy Dao,1* Tadaaki Nagao,1,2* Kai Chen,1 Shatoshi Ishii,1 Gui Han1
1International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2Condensed Matter Physics, Graduate School of Science, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-0810, Japan
Nano-Micro Conference, 2017, 1, 01040
Published Online: 25 October 2017 (Abstract)
DOI:10.11605/cp.nmc2017.01040
Corresponding Author. Email: Thang Duy Dao, This email address is being protected from spambots. You need JavaScript enabled to view it.; Tadaaki Nagao, This email address is being protected from spambots. You need JavaScript enabled to view it.

How to Cite

Citation Information: Thang Duy Dao, Tadaaki Nagao, Kai Chen, Shatoshi Ishii, Gui Han, Nanowire-plasmonic photocatalysts and thermal emitters. Nano-Micro Conference, 2017, 1, 01040 doi: 10.11605/cp.nmc2017.01040

History

Received: 12 June 2017, Accepted: 19 June 2017, Published Online: 25 October 2017

Abstract

Optical absorption enhancement using plasmonic structures enables a wide range of applications such as solar energy harvesting devices, light emitting devices and photothermal management. For example, in plasmonic photocatalysis, it has recently attracted great interest in enhancing photocatalytic efficiency not only by the plasmon-enhanced near field but also by the plasmon-enhanced hot-carrier injection, which could boost the visible response of wide bandgap photocatalysts [1]. Here we report measurements and simulations of the efficient sunlight-driven and visible-active photocatalysts composed of plasmonic metals and ZnO nanowire (NW) arrays fabricated via an all-wetchemical route (Figure 1a) [2]. Another application of plasmon-enhanced light absorption is the perfect absorber and thermal emitter [3]. It is found that with proper designs supported by the electromagnetic simulation, the plasmonic structures could exhibit near perfect absorption at desired resonant wavelengths, making them promising for a number of potential application such as thermal emitters (Figure 1b) [4], molecular sensors [5] and IR sensors [6].

Fig1

Figure 1. (a) Plasmon-mediated photocatalytic activity of ZnO NWs. (b) Plasmonic absorbers for thermal emitters.

 

References

[1] M. L. Brongersma; N. J. Halas; P. Nordlander, Plasmon-induced hot carrier science and technology. Nature Nanotechnology. 10, 25-34 (2015). doi:10.1038/nnano.2014.311
[2] T. D. Dao; G. Han; N. Arai; T. Nabatame; Y. Wada; C. V. Hoang; M. Aono; T. Nagao, Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays. Physical Chemistry Chemical Physics. 17, 7395-7403 (2015). doi:10.1039/C4CP05843G
[3] X. Liu; T. Tyler; T. Starr; A. F. Starr; N. M. Jokerst; W. J. Padilla, Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters. 107, 045901 (2011). doi:10.1103/PhysRevLett.107.045901
[4] T. D. Dao; K. Chen; S. Ishii; A. Ohi; T. Nabatame; M. Kitajima; T. Nagao, Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers. ACS Photonics. 2, 964-970 (2015). doi:10.1021/acsphotonics.5b00195
[5] K. Chen; T. D. Dao; S. Ishii; M. Aono; T. Nagao, Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy. Advanced Functional Materials. 25, 6637-6643 (2015). doi:10.1002/adfm.201501151
[6] T. D. Dao; S. Ishii; T. Yokoyama; T. Sawada; R. P. Sugavaneshwar; K. Chen; Y. Wada; T. Nabatame; T. Nagao, Hole Array Perfect Absorbers for Spectrally Selective Midwavelength Infrared Pyroelectric Detectors. ACS Photonics. 3, 1271-1278 (2016). doi:10.1021/acsphotonics.6b00249

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
© The Author(s) 2017

[1] M. L. Brongersma; N. J. Halas; P. Nordlander, Plasmon-induced hot carrier science and technology. Nature Nanotechnology. 10, 25-34 (2015). doi:10.1038/nnano.2014.311
[2] T. D. Dao; G. Han; N. Arai; T. Nabatame; Y. Wada; C. V. Hoang; M. Aono; T. Nagao, Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays. Physical Chemistry Chemical Physics. 17, 7395-7403 (2015). doi:10.1039/C4CP05843G
[3] X. Liu; T. Tyler; T. Starr; A. F. Starr; N. M. Jokerst; W. J. Padilla, Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters. 107, 045901 (2011). doi:10.1103/PhysRevLett.107.045901
[4] T. D. Dao; K. Chen; S. Ishii; A. Ohi; T. Nabatame; M. Kitajima; T. Nagao, Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers. ACS Photonics. 2, 964-970 (2015). doi:10.1021/acsphotonics.5b00195
[5] K. Chen; T. D. Dao; S. Ishii; M. Aono; T. Nagao, Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy. Advanced Functional Materials. 25, 6637-6643 (2015). doi:10.1002/adfm.201501151
[6] T. D. Dao; S. Ishii; T. Yokoyama; T. Sawada; R. P. Sugavaneshwar; K. Chen; Y. Wada; T. Nabatame; T. Nagao, Hole Array Perfect Absorbers for Spectrally Selective Midwavelength Infrared Pyroelectric Detectors. ACS Photonics. 3, 1271-1278 (2016). doi:10.1021/acsphotonics.6b00249

 

Comments (0)

There are no comments posted here yet

Leave your comments

Posting comment as a guest. Sign up or login to your account.
Attachments (0 / 3)
Share Your Location