Spin Texture And Spin Injection In A 3D Topological Insulator

W. M. Chen,1* Y. Q. Huang,1 I. A. Buyanova,1 Y. X. Song,2 S. M. Wang2
1Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping, Sweden
2State Key Laboratory of Functional Materials for Informatics, CAS Center of Excellence for Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
Nano-Micro Conference, 2017, 1, 01063
Published Online: 30 October 2017 (Abstract)
DOI:10.11605/cp.nmc2017.01063
Corresponding Author. Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

How to Cite

Citation Information: W. M. Chen, Y. Q. Huang, I. A. Buyanova, Y. X. Song, S. M. Wang, Spin Texture And Spin Injection In A 3D Topological Insulator. Nano-Micro Conference, 2017, 1, 01063 doi: 10.11605/cp.nmc2017.01063

History

Received: 31 May 2017, Accepted: 12 June 2017, Published Online: 30 October 2017

Abstract

One of the most critical steps towards spin functionalized electronics and optoelectronics is to generate and manipulate spin current in a desirable way. In 3D topological insulators (TIs), a strong spin-orbit interaction and the time-reversal symmetry result in spin-momentum locking of the surface electrons, which leads to a unique surface spin texture and the prospect of generating directional and dissipationless spin current running across the surface that is promising for spintronic applications. However, the metallic nature that is often found to be inherent to many 3D TIs due to residual defects has unfortunately imposed a severe obstacle to controlling surface spin current. As a result, very little experimental work has been done so far on this issue. Moreover, since most of the early studies have been limited to Bi2Se3 - a prototypical TI with a rather weak hexagonal warping effect, the contribution of the out-of-plane spin texture to the photocurrent remains elusive so far. In this work, we show that, with circular polarized light, helicity driven photocurrent is obtained in another 3D TI Bi2Te3 that exhibits a stronger hexagonal warping effect. We find the helicity-dependent photocurrent to be sensitive to the incident angle of the light, which could be explained within the framework of the circular photo-galvanic effect (CPGE) by taking into account the spin texture of the topological surface state. By correlating the light incident angle and probing surface current directions, we are able to identify photocurrent components associated with the in-plane and out-of-plane spin texture of the TI and thereby directly uncover the impact of the out-of-plane spin texture on surface spin current promoted by the strong hexagonal warping effect. By exploring the out-of-plane spin texture, we demonstrate spin injection from GaAs to TI and its significant contribution to the surface current [1]. We further show that the spin current of TI can be manipulated by the precession of injected electron spins in an external magnetic field. These discoveries pave the way to not only intriguing new physics but also enriched spin functionalities by integrating TI with conventional semiconductors, such that spin-enabled optoelectronic devices may be fabricated in such hybrid structures.

References

[1] Y. Q. Huang; Y. X. Song; S. M. Wang; I.A. Buyanova; W. M. Chen, Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator. Nature Communications. 8, 15401 (2017). doi:10.1038/ncomms15401

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
© The Author(s) 2017

[1] Y. Q. Huang; Y. X. Song; S. M. Wang; I.A. Buyanova; W. M. Chen, Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator. Nature Communications. 8, 15401 (2017). doi:10.1038/ncomms15401

 

Comments (0)

There are no comments posted here yet

Leave your comments

Posting comment as a guest. Sign up or login to your account.
Attachments (0 / 3)
Share Your Location