Novel Self-powered UV-Visible Photodetector with Fast Response and High Photosensitivity Employing Fe:TiO$_2$/n-Si Heterojunction

Lin Sun,1* Chunrui Wang,1* Tao Ji2,3

1Department of Applied Physics and state key laboratory for modification of chemical fibers and polymer materials, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai, China

2State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai, China

3School of Fundamental Studies, Shanghai University of Engineering Science, 333 Long Teng Road, Songjiang District, Shanghai, China

Corresponding Author. Email: Lin Sun, suns@mail.dhu.edu.cn; Chunrui Wang, crwang@dhu.edu.cn

Received: 31 May 2017, Accepted: 13 June 2017, Published Online: 31 October 2017

Citation Information: Lin Sun, Chunrui Wang, Tao Ji, Nano-Micro Conference, 2017, 1, 01073 doi: 10.11605/cp.nmc2017.01073

Abstract

A UV-Visible photodetector employing heterojunction between the Fe:TiO$_2$ and Si was fabricated via a facile solution process. The existence of built-in electric field between TiO$_2$ and Si help facilitate the separation of photogenerated electron-hole pairs and regulate the electron transport. Under zero bias, the device exhibited high responsivity of 46 mA/W (350 nm) and 60 mA/W (600 nm) with a 0.5 mw∙cm$^{-2}$ light irradiation. At a small reverse bias of -0.5V, the quantum efficiency of the heterojunction rise up beyond 100% with a broad wavelength range. The exploring of Fe:TiO$_2$/n-Si heterojunction photodetector demonstrates an ultrasensitive (on/off ratio up to 103), fast (rise/decay time of <10/15 ms), and broad-band (UV-visible) photodetection with no or low external energy supply. Such novel photodetector with Fe:TiO$_2$/n-Si Heterojunction might be potentially useful for relative applications with weak-signal fast detection in UV-visible band.

Figure 1. Responsivity and EQE of Fe:TiO$_2$/n-Si heterojunction under each bias in UV-visible band.

References

[2] Tao Ji; Ze Cui; Wenlong Zhang; Yunjiu Cao; Yongfang Zhang; Shu-ang He; Mingdong Xu; Yangang Sun; Rujia Zou; Junqing Hu, UV and visible light synergetic photodegradation using rutile TiO$_2$ nanorod arrays based on a p–n Junction. Dalton Transactions. 46, 4296-4302 (2-17). doi:10.1039/C7DT00261K

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License.
© The Author(s) 2017