Gram-scale production of nanoporous graphene by Mg-thermoreduction of CS$_2$ for electrochemical energy storage

Lu Sun, Jinzhang Liu, Yan Li*

School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Corresponding Author. Email: liyan@buaa.edu.cn

Received: 31 May 2017, Accepted: 13 June 2017, Published Online: 16 November 2017

Abstract

Mass production of porous carbon at low cost for supercapacitor applications is highly desired. Herein, for the first time we report a novel method to grow porous 3D graphene by using Mg to reduce CS$_2$ vapor. In a tube furnace, the mixture of Mg and NaCl powders are heated at 570 °C and reacted with CS$_2$ vapor carried by an Ar flow. The Mg powder can be about 95% consumed and the weight of resultant carbon nanomaterial is in gram scale after one experiment. This 3D graphene product with specific surface area of 980 cm2/g is processed into electrodes for electrochemical test, showing a specific capacitance of 212 F/g at 1 A/g in H$_2$SO$_4$ aqueous electrolyte. Besides, the electrode is continuously charged/discharged at 5 A/g for 10,000 cycles and its capacitance remains 98.5% of the original value.

Figure 1. (a) and (b) SEM images of the 3D graphene product at low and high magnifications.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License.
© The Author(s) 2017