Polymers of Intrinsic Microporosity (PIMs) are broadly recognized as a potential next generation membrane material for gas separations due to their ultra-permeable characteristics. This mini review aims to provide an overview of these materials and capture its very essence, from chemistry to applications. PIMs-based gas separation membranes are divided into three main categories, i.e., neat PIMs, polymer blend PIMs, and mixed matrix PIMs membranes. This review covers a wide spectrum of PIMs with their gas diffusion mechanisms and separation performance, all of which are examined in detail. Core challenges and opportunities of PIMs membrane technology are reviewed, and this article concludes with future perspectives on PIMs. This mini review establishes a comprehensive understanding of the key technological competence and barriers of PIMs for next-generation gas separations membranes.

1.1 PIMs overview

PIMs are defined as polymers that possess “a continuous network of interconnected intermolecular voids” with pores of less than 2 nm in diameter, formed “as a direct consequence of the shape and rigidity of the component macromolecules” [4]. In the initial design, the aromatic rings in PIMs are fused together so that the polymer chains cannot rotate along the backbone direction and the packing of polymers to a more “condensed” state (i.e. less free space between polymer chains) is strictly restrained. The loss of rotational freedom and inefficient packing of polymer chains enables PIMs to assume a rigid and contorted molecular configuration. As a result, a large number of pores and high fractional free volume is imparted into the PIMs matrix, leading to Brunauer-Emmet-Teller (BET) surface areas as high as 800 m² g⁻¹. Due to this high surface area and porosity, PIMs can be tailored for multiple applications, such as gas separation, gas storage and catalysis [4].

The idea of PIMs was traced back to Prof. McKeown’s work on phthalocyanine materials conducted at Cardiff University in the 1990s [4]. Historically, his group designed a spirocyclic phthalocyanine insoluble network polymer via reaction of a spirocyclic bisphthalonitrile to obtain catalytic activity for oxidation reactions. Serendipitously, PIMs were discovered during a control experiment in the phthalocyanine work. To determine phthalocyanine formation efficiency, the group designed a solution-processable non-network polymer through the dibenzodioxin polymerization of spirocyclic 5,5,6,6-tetrahydroxy-3,3,3,3–tetramethyispirobisindane and 2,3,5,6-tetrafluoroterephthalonitrile. This material had a BET surface area of 800 m² g⁻¹ and was later named as PIM-1 in 2004 with the repeat unit shown in Figure 1 [4]. In principle, PIM-1 was synthesized through a nucleophilic aromatic substitution reaction between hydroxylated aromatic monomers and fluorinated aromatic monomers.

Figure 1. Repeat unit of PIM-1 [4].
Shortly after the discovery of PIM-1, Prof. Budd at the University of Manchester utilized PIM-1 to produce pervaporation membranes for phenol/water separations [5]. PIM-1 is considered as the most well-known PIMs as it is based on commercially available monomers with simple structures, high molecular weight and decent mechanical properties.

During the past two decades, PIMs have been investigated as a new class of extremely permeable membrane materials. PIMs have demonstrated amenable solution-processability and gas permeability far beyond conventional polymers, as will be closely examined in Sections 2.1-2.3. Tremendous resources have been devoted to developing new PIMs-based membranes. Key areas of advance of PIMs as gas separation membranes includes: i) modification and functionalization of PIMs polymer chains to manipulate gas separation properties; ii) blending PIMs with other inexpensive industrially available polymers to finely tailor membrane performance and manufacturability; and iii) mixing PIMs with fillers to prepare hybrid mixed matrix membranes with unique and synergistic properties. These PIMs, including their structures and gas separation behaviors, will be explored thoroughly in this paper to provide a completed overlook and understanding of such a crucial material.

1.2 Applications of PIMs

As a microporous solution-processable membrane material, PIMs have demonstrated astonishing gas separation performance by surpassing the productivity-selectivity tradeoff curve, the so-called upper bound popularized by Robeson [3]. The Robeson upper bound refers an empirical relationship between gas permeability and selectivity of membrane materials, where a more permeable membrane tends to have a lower gas selectivity, and vice versa [6]. PIMs were also employed as pervaporation membranes (the first application of PIMs membranes as mentioned above) and organic solvent nanofiltration membranes. Besides broad application in membranes, PIMs were made into sensors, for instance, PIM-3 was used as an optical sensor for ethanol [7]. Other applications of PIMs include chemoselective adsorbents, heterogeneous catalysts and hydrogen storage [8-10].

1.3 Gas transport mechanisms in membranes

As mentioned earlier, conventional polymers suffer from the Robeson upper bound, a tradeoff between productivity and selectivity. It is important to understand the basic principles involved in the molecular transport in membranes to design PIMs bypassing the upper bound limit of traditional polymer membranes. Based on the material and fabrication process, membranes are generally divided into three categories: (i) neat polymer membranes; (ii) polymer blend membranes; and (iii) mixed matrix membranes. Equations governing gas molecule transport through each type of membranes are explained below.

1.3.1 Gas permeation in polymeric membranes

For gas separations in pure polymeric membranes, the classical solution-diffusion model is most widely accepted as a means to describe gas transport in the membranes [11]. In this model, gas molecules sorb in the membrane upstream and then diffuse through the membrane due to chemical potential differences across the membrane induced by the partial pressure or fugacity differences. The gas mixture finally desorbs in the downstream of membranes. Separation of a gas mixture is realized through the membrane as a result of different solubilities and diffusivities of gas molecules in the membrane, the thermodynamic and kinetic factor, respectively. The gas separation productivity of a dense film membrane is defined by the permeability, \(P \), which is the production of diffusivity, \(D \), and solubility, \(S \), via Eq. (1):

\[
P = D \cdot S \tag{1}
\]

The permeability of penetrant \(i \), \(P_i \), is determined by the gas permeation flux of penetrant \(i \), \(n_i \), normalized by the membrane thickness, \(l \), and the partial pressure or fugacity difference, \(\Delta p_i \), across the membrane, viz.,

\[
P_i = \frac{n_i \cdot l}{\Delta p_i} \tag{2}
\]

The common unit of permeability adapted in membrane community is called Barrer, where,

\[
1 \text{ Barrer} = 10^{-10} \left(\frac{\text{cm}^3(\text{STP}) \cdot \text{cm}}{\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}} \right) \tag{3}
\]

For asymmetric hollow fiber membranes with the structure will be shown in 9, a completely different conuration from dense film membranes, the separation productivity is determined by the permeance, \(P/I \), which is the pressure or fugacity difference normalized flux of permeant, \(i \), through Eq. (4).

\[
\frac{P_i}{l} = \frac{n_i}{\Delta p_i} \tag{4}
\]

The unit of permeance is the GPU, defined in Eq. (5):

\[
1 \text{ GPU} = 10^{-9} \left(\frac{\text{cm}^3(\text{STP})}{\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}} \right) \tag{5}
\]

In Eq. (4), \(P_i/l \) is the permeability of a dense film membrane made from the same material as hollow fiber membranes; \(l \) is the effective selective skin layer thickness of hollow fibers; \(\Delta p_i \) is the transmembrane partial pressure (or fugacity) differences across the hollow fiber wall. The pressure differences must be replaced with the fugacity differences to accurately quantify the true separation performance of the membrane under high pressure operation conditions.

On the other hand, the membrane selectivity, \(\alpha_{ij} \), describes the separation efficiency of a membrane, determined by the ratio of permeability or permeance of the fast gas, \(i \), to the slow gas, \(j \), via Eq. (6):

\[
\alpha_{ij} = \frac{P_i}{P_j} = \frac{P_{i}/l}{P_{j}/l} \tag{6}
\]

1.3.2 Gas permeation in polymer blend membranes

Polymer blend membranes are formed by mixing two distinctive polymers into one membrane matrix. Blending polymers simultaneously utilizes advantages of each individual polymer in order to create unique and synergistic gas separation properties. It is a cost- and time-effective approach to finely tune the membrane performance as the blended polymer is usually commercially available and inexpensive. Depending on their nature, the two polymers in polymer blends are miscible, immiscible or partially miscible. A miscible polymer blend is homogenous with only one phase, where the two polymers are completely interpenetrated with each other. On
the other hand, an immiscible blend has two phases and only minor interpenetration of polymer chains exists in the interphase. Figure 2 depicts the key differences between miscible and immiscible polymer blend.

Depending on the miscibility of two polymers, gas permeation behavior of polymer blend membranes is simulated by different models. In the case of two miscible polymers, the permeability of blend membranes follows an empirical relationship with the individual component via the following equation [12]:

\[
\ln P_b = \varphi_1 \ln P_1 + \varphi_2 \ln P_2
\]

(7)

where \(P_b \), \(P_1 \), and \(P_2 \) refer the permeability of the blend membrane and constitutive polymer 1 and 2 in its neat format, respectively. \(\varphi_1 \) and \(\varphi_2 \) denote the respective volume fraction of polymer 1 and 2, respectively. The separation efficacy of a polymer blend membrane is determined by the ratio of permeability for a gas pair, as described in Eq. (6).

In the case of partially miscible or immiscible (or phase separated) polymers, prediction of gas transport is somewhat complicated. Several models, including the parallel model, series model, and Maxwell model, were proposed to describe the gas permeation in polymer blend membranes [13]. Among those models, the model in Eq. (7) provided a better estimation than Maxwell model in some cases [14, 15], which therefore was chosen in this section. This fact notwithstanding, Maxwell model was frequently used in simulating gas transport in mixed matrix membranes, as will be discussed in Section 1.3.3.

The miscibility of two polymers is often checked through optical measurements or Differential Scanning Calorimetry (DSC) experiments. Phase separation can be easily found by polarized light microscope as the boundary layer of the interface is apparent under microscope [16]. On the other hand, a homogeneous phase with two miscible polymers demonstrates a single glass transition temperature (Tg) while an immiscible heterogeneous system consisting two immiscible polymers displays two distinctive Tg [12]. The study of Tg evolution serves an effective technique to explore the miscibility of two polymers.

1.3.3 Gas permeation in mixed matrix membranes

To further advance membrane performance, another effective and straightforward approach is via preparing mixed matrix membranes, which consists of two phases, a continuous polymer phase and dispersed particulate phase. Several groups have reported mixed matrix membranes crossing the upper bound for many different types of separations, as revealed in Figure 8 (will be discussed in Section 2.3).

Gas transport mechanism through mixed matrix membranes is a complicated subject due to the hybrid and heterogeneous nature of such composite membrane. To simulate ideal gas diffusion in mixed matrix membranes, several models, such as the Maxwell, Bruggeman, Lewis–Nielsen and Cussler models, have been proposed and applied for systems with different loadings and morphologies of fillers [17]. Among them, Maxwell model is popularly used as an effective and quantitative method to fit gas permeation in a mixed matrix.

The Maxwell principle dates back to 1873 when Maxwell defined the dielectric constant, or called permittivity, of a dielectric as the factor of proportion between the electric displacement and the electric field or potential gradient [18]. In the case of mixed matrix membranes, the gas permeation flux is proportional to the pressure difference or potential gradient and the permeability is the factor of the proportion. It is assumed that the pressure is continuous across any interface between two phases, i.e., the continuous phase and dispersed phase. Analogous to the permittivity of heterogeneous dielectrics, one can predict permeability of a mixed matrix membrane by replacing the permittivity with permeability in the continuous and dispersed phases in the equation. For a low loading of spherical fillers, the permeability, \(P_c \), of a mixed matrix membrane is described by Maxwell approximation below [18]:

\[
P_c = P_m \frac{P_f(1+2\varphi_f)+P_m(2-2\varphi_f)}{P_f(1-\varphi_f)+P_m(2+2\varphi_f)}
\]

(8)

\(P_m \) and \(P_f \) are the permeability of the continuous phase and dispersed filler phase, respectively, in the mixed matrix membrane. \(\varphi \) refers the volume fraction of filler in the membrane. It was assumed that the loading of dispersants is sufficiently low so that the gas diffusion pattern around a particle is not affected by its surrounding particles and the particle-particle interaction is negligible. A particle loading up to 30% was fitted into Maxwell model and found to approximate gas permeabilities [19]. However, it is important to note that the assumption of negligible particle-particle interaction and inhomogeneity of mixed matrix are the main reasons that cause deviated or failed prediction of gas permeabilities using Maxwell model.

Similar to the neat polymer and polymer blend membranes, the gas separation selectivity of a mixed matrix membrane is defined by the ratio of permeability of a given gas pair, as described in Eq. (6).
To summarize gas transport mechanisms in membranes, the gas transport processes through the three kinds of PIMs-based membranes can schematically be depicted in Figure 3, using CO$_2$/CH$_4$ gas pair as a feeding gas mixture. In Figure 3, the red and grey wiggly lines represent two polymers and the orange dots indicate the filling materials in mixed matrix membranes. Red dashed lines depict gas flow direction. As shown in Figure 3(a), polymer membranes follow the solution-diffusion model and the feeding CO$_2$/CH$_4$ molecules are dissolved and diffuse in the membrane and get separated in the permeate side. In the case of PIMs-based polymer blend membranes, as Figure 3(b) depicts, the incorporation of another less permeable but more selective polymer into PIMs membrane (red line) usually benefits gas selectivity with some reduction of flux, as will be examined in Section 2.2. For the mixed matrix membrane in Figure 3(c), the fillers (orange dots) establish a percolation network, leading to a synergistic enhancement of both permeability and selectivity in some cases. Such unique feature of mixed matrix membranes will be reviewed in Section 2.3.

2 PIMS MEMBRANES FOR GAS SEPARATIONS

2.1 Neat PIMs membranes

Gas separation membranes can be prepared from neat PIMs, meaning only one PIM polymer is used in the membrane without mixing any other additives, like nanoparticles. In the recent two decades, extensive PIMs membranes were developed by altering constitutive monomers of PIMs, such as functionalization of polymer chains or introducing new monomers. The resulting polymers demonstrated intrinsic microporosity through creating either spirobidentane (SBI)-based or non-SBI-based sites with bulky pendant groups. SBI refers a unique molecule, consisting of two indanes connected by a spiro carbon center. Here, an indane contains a benzene ring attached by a five-membered or six-membered ring. A typical SBI unit is shown in Figure 4.

Figure 3. Schematic describing three gas diffusion processes through (a) polymer membrane, (b) polymer blend membrane, and (c) mixed matrix membrane. Feed gas example: CO$_2$/CH$_4$ pair. Wiggly lines represent polymer chains (the grey color refers polymer 1 and the red refers polymer 2). Red dashed lines depict gas flow direction.

The first kind of neat PIMs membranes is formed with a SBI-centered A-B type PIMs, where A and B represent aromatic tetrol monomer and halogen-containing aromatic monomer repeating units (such as fluorinated or chlorinated), respectively. A-B PIMs is synthesized through dibenzodioxane formation of two monomers (e.g. A and B monomer) wherein small gas molecules, such as hydrogen fluoride, are released as by-products during reaction. PIM-1 represents the first example of SBI-centered PIMs with monomer 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethylspirobidentane and 2,3,5,6-tetrafluoroterephthalonitrile (monomer B) shown in Figure 5 [4]. Since the discovery of PIM-1, new hydroxylated aromatic monomers with SBI-centered monomers were synthesized to prepare novel PIMs. PIMs-based on 1,1-spiro-bis(1,2,3,4-tetrahydronaphthalene) monomer were developed in 2009 [20]. The five-membered spiro aromatic rings on polymer A were replaced by six-membered rings and the pending groups attached the benzene rings were also modified. A large family of SBI-based PIMs was reported afterwards to significantly expand the spectrum of PIMs [4].

2.1.1 Basic SBI-based PIMs

Figure 4. Chemical structure of typical SBI units with benzene rings attached by five-carbon rings connected by a spiro carbon center, where the rings do not possess rotation freedom and form a rigid structure.

Figure 5. Chemical structures of (a) Monomer A: 5, 5, 6, 6-tetrahydroxy-3, 3, 3-tetramethylspirobidentane and (b) Monomer B: 2, 3, 5, 6-tetrafluoroterephthalonitrile of PIM-1 [4].

to prepare neat SBI-based PIMs are summarized in Table 1. Here, B monomers can contain both halogen and SBI centers in some cases.

Despite dozens of monomers reported to synthesize SBI-based PIMs, only a few of such PIMs were made into gas separation membranes, including PIM-1, PIM-7, PIM-Spiro-bifluorene (SBF) and PIM-TMN-SBF [21-23] (TMN-SBF: 2,2',3,3'-Tetrahydroxy-6,6,6',6',9,9,9',9'-octamethyl-6,6',7,7',8,8',9,9'-octahydro-11,11'-spiro-bi[cyclohexa[b] fluorine). This clearly suggests there is plenty of headspace for further preparing neat PIMs membranes. Their chemical structures are depicted in Figure 1, 5 (PIM-1) and Figure 6.

2.1.2 Tröger's Base-based PIMs

Tröger’s Base (TB) was firstly synthesized and reported in 1887 and studied for fields such as supramolecular chemistry and catalysis [24]. TB unit was recently incorporated into PIMs network via TB polymerization and produced a so-called TB-PIMs membrane. Most of the TB-based monomers are single bi-amino aromatic polymers with SBI or without SBI-centers. Bi-amino aromatic polymers with bicyclic rings, such as ethanoanthracene (EA) and triptycene (Trip), can form a rigid and contorted network with SBI centers in the presence of dimethoxy methane in trifluoroacetic acid [25]. TB-PIMs were also synthesized through reacting TB-embedded tetrolhydroxy aromatic monomers and 2,3,5,6-tetrafluoroterephthalonitrile [26]. After its first application in membranes, several bi-amino aromatic monomers were used to obtain TB-based PIMs with structures listed in Figure 7 and Table 1 [27-29].

The gas separation properties of typical TB-based PIMs membranes are described in Table 2. Note that PIM-EA-TB, PIM-Trip-TB and PIM- Benzotriptycene (BTrip)-TB represent three examples of super permeable PIMs membranes in this category, exhibiting separation performance well above the upper bound [24, 30]. Clearly, TB-based PIMs have become an important branch of PIMs membranes, deserving our attention.

2.1.3 Polyimide-based PIMs

PIMs-based on polyimide (PI) were heavily studied in recent years. Polymides, formed via polycondensation of anhydrides and diamines, are a new generation of permeable membrane materials offering high gas separation performance, easy processability and manufacturability. Following the similar synthesis route as polyimide, anhydrides and diamines with functional groups can react through polycondensation to produce a series of PI-based PIMs. Due to the relatively flexible nature and high Tg of polymides, integrating polyimide groups into PIMs increases polymer robustness, improves solvent solubility and leads to separation performance surpassing the upper bound [30]. It is also worthy to mention that the unique functionalities and polymer properties render PI-PIMs a rich class of derivatives via thermal treatments, such as thermally rearranged (TR) and carbon molecular sieves (CMS) [15, 31].

PI-PIMs are generally divided into three categories: 1) PIMs made from reaction of dianhydride with contortion sites, such as SBI, EA and Trip, and halogen-containing aromatic diamines without contortion sites [32-36]; ii) PIMs prepared through dianhydride without contortion sites but diamines with contortions sites, such as SBI, TB, Trip, and pentiptycene[37-44]; iii) PIMs formed via TB polymerization of single di-amino aromatic monomer with imide bonds and contortion sites [45-47]. PI-PIMs with contorted sites in both dianhydride and TB-based diamine units were seldom reported [48]. PI-PIMs were thermally treated to obtain TR-PIMs, such as

![Figure 6](image1.png) **Figure 6.** Structures of SBI-centered PIMs: (a) PIM-7, (b) PIM-SBI and (c) PIM-TMN-SBF for gas separations with gas separation performance shown in Table 2 [21, 22]. Note that those PIMs contain SBI units and rings are fused together, prohibiting the rotation of polymer chains.

![Figure 7](image2.png) **Figure 7.** Chemical structures of two TB-based PIMs membranes (a) TB-PIM and (b) 1, 5-diaminonaphathelen (DAN)/4, 4-(Hexafluoroisopropylidene) dianiline (HFD) PIM [26, 29]. Some of other TB-based PIMs, including PIM-EA-TB, PIM-SBI-TB, PIM-Trip-TB, and PIM-2,2-bis (3-methyl-4-aminophenyl) adamantane (Ad-Me) are shown in Table 1.
Table 1. Chemical structures of PIMs monomers/PIMs. Notes: 6FDA: 4, 4′-(hexafluoroisopropylidene) diphthalic anhydride; BTDA: 3,3′,4,4′-benzophenonetetracarboxylic dianhydride.

<table>
<thead>
<tr>
<th>PIMS</th>
<th>Chemical structures of monomers/PIMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic SBI-based PIMs</td>
<td></td>
</tr>
</tbody>
</table>

| TB-based PIMs |

Here are the chemical structures of the PIMs monomers/PIMs as described in the table.
Table 1 (Continued)

<table>
<thead>
<tr>
<th>PIMS</th>
<th>Chemical structures of monomers/PIMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyimide-based PIMs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-SBI-based PIMs	
	![Chemical structure 10](image10.png)
	![Chemical structure 11](image11.png)
	![Chemical structure 12](image12.png)
	![Chemical structure 13](image13.png)
	![Chemical structure 14](image14.png)

PIMs with thermal treatment	
	![Chemical structure 15](image15.png)
	![Chemical structure 16](image16.png)
	![Chemical structure 17](image17.png)
	![Chemical structure 18](image18.png)
	![Chemical structure 19](image19.png)
Table 2. Gas permeation properties of neat PIMs membranes. Permeation data were adapted based on pure gas permeation unless specified. *Alcohol treated. TPDA-mPDA: 9,10-disopropyl-triphenylene-based dianhydride (TPDA), TPDA-m-phenylenediamine (mPDA); CTB1-DMN: 5,6,11,12-tetrahydro-5,11-methanobenzazol[4,5-e] [8] annulene-2,3,8,9-tetraarboxylic anhydride (CTB1), 3,3’-dimethylpyridazine (DMN); SPDA-HSBF: Spirobisindane-based dianhydride (SPDA), 2,2’-dihydroxyl-9,9’-spirobifluorene-3,3’-diamine (HSBF); TDPA-2DFA-P1: 3,9-diamino-4,10-dimethyl-6H,12H-5,11-methanobenzol[1,5] diazone (TBDA2); 4MTBDA–SBIDA: 2,8-diamino-1,3,7,9-tetramethyl-6H,12H-5,11-methanobenzol[b, f][1,5] diazone (4MTBDA), spirobisindane-based dianhydride (SBIDA); 6FDA-DAT1-OH: 2,6-(7)-dihydroxy-3,6-(7)-diaminotriptycene (DAT1-OH); DC-PIM1: decarboxylated-PIM1; TOX-PIM-1: thermal-oxidatively crosslinked PIM-1; PIM-(Na-1d): sodium hydrolyzed PIM for 1 day.

<table>
<thead>
<tr>
<th>PIMs type</th>
<th>PIMs Name</th>
<th>Testing conditions</th>
<th>Permeability (P, Barrer)</th>
<th>Selectivity (αH2/αi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic SBI-based PIMs</td>
<td>Basic SBI-based PIMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic SBI-based PIMs</td>
<td>Basic SBI-based PIMs</td>
<td>30 °C, 0.2 bar*</td>
<td>1300</td>
<td>660</td>
</tr>
<tr>
<td>Basic SBI-based PIMs</td>
<td>Basic SBI-based PIMs</td>
<td>25 °C, 0.2 bar*</td>
<td>3300</td>
<td>1320</td>
</tr>
<tr>
<td>Basic SBI-based PIMs</td>
<td>Basic SBI-based PIMs</td>
<td>35 °C, 4 bars</td>
<td>2332</td>
<td>1061</td>
</tr>
<tr>
<td>Basic SBI-based PIMs</td>
<td>Basic SBI-based PIMs</td>
<td>25 °C, 3.4 bars, 40 min*</td>
<td>3042</td>
<td>1114</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>25 °C, 3.4 bars, 120 min*</td>
<td>3364</td>
<td>1531</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>25 °C, 3.4 bars*</td>
<td>3847</td>
<td>-</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>25 °C, 1 bar*</td>
<td>5010</td>
<td>1950</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>25 °C, 1 bar</td>
<td>2936</td>
<td>1340</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>30 °C, 0.2 bar</td>
<td>860</td>
<td>440</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>25 °C, 1 bar*</td>
<td>1000</td>
<td>550</td>
</tr>
<tr>
<td>Non-SBI-based PIMs</td>
<td>Non-SBI-based PIMs</td>
<td>25 °C, 0.2 bar</td>
<td>25</td>
<td>720</td>
</tr>
</tbody>
</table>

Table 2. Gas permeation properties of neat PIMs membranes. Permeation data were adapted based on pure gas permeation unless specified. *Alcohol treated. TPDA-mPDA: 9,10-disopropyl-triphenylene-based dianhydride (TPDA), TPDA-m-phenylenediamine (mPDA); CTB1-DMN: 5,6,11,12-tetrahydro-5,11-methanobenzazol[4,5-e] [8] annulene-2,3,8,9-tetraarboxylic anhydride (CTB1), 3,3’-dimethylpyridazine (DMN); SPDA-HSBF: Spirobisindane-based dianhydride (SPDA), 2,2’-dihydroxyl-9,9’-spirobifluorene-3,3’-diamine (HSBF); TDPA-2DFA-P1: 3,9-diamino-4,10-dimethyl-6H,12H-5,11-methanobenzol[1,5] diazone (TBDA2); 4MTBDA–SBIDA: 2,8-diamino-1,3,7,9-tetramethyl-6H,12H-5,11-methanobenzol[b, f][1,5] diazone (4MTBDA), spirobisindane-based dianhydride (SBIDA); 6FDA-DAT1-OH: 2,6-(7)-dihydroxy-3,6-(7)-diaminotriptycene (DAT1-OH); DC-PIM1: decarboxylated-PIM1; TOX-PIM-1: thermal-oxidatively crosslinked PIM-1; PIM-(Na-1d): sodium hydrolyzed PIM for 1 day.
PIM-TR-polybenzoxazoles (PBO) [49]. In summary, PI-PIMs take advantages of both flexibility of polyimides and rigidity of PIMs, representing a critical family of PIMs to fabricate high performing neat PIMs membranes and their derivatives.

2.1.4 Non-SBI-based PIMs

The non-SBI-based PIMs refer any PIMs without SBI sites in hydroxyl aromatic monomer moieties, which may overlap with some of TB or PI-based PIMs in Section 2.1.2-2.1.3. Thus, this section will focus on non-SBI-based PIMs without involving with TB and PI monomers. A key feature of non-SBI-based PIMs is that the rigid backbone with contortion sites can be achieved through introducing: i) planar aromatic rings, ii) bicyclic rings or iii) bulky pendant groups, as shown in Table 1 [4, 50]. Note that the bicyclic rings are mostly EA or Trip and involved with forming contorted TB units, such as PIM-EA-TB and PIM-Trip-TB [35, 51], already discussed in Section 2.1.2. However, hydroxyl aromatic monomers with bicyclic rings can react with fluorinated aromatic monomers, such as 2, 3, 5, 6-tetrafluoro-1,4-phenylene, to prepare PIMs without formation of TB units [22, 52]. Bulky side groups containing aromatic rings were used in PIMs to hinder polymer chain rotation and create contorted sites [50, 53]. For example, hexaphenylbenzene (HPB) was added to PIMs (PIHM) to render a disrupted structure and therefore enhance gas permeability significantly [54]. Synthesis of SBI-based PIMs and non-SBI-based PIMs can involve multiple steps with complicated chemistry and controllable functionalities. However, non-SBI based PIMs using of EA or Trip bicyclic rings generally create rather frustrated microstructures, which can yield membranes with higher gas permeability than the case of SBI-based PIMs with short side chains. The two approaches whether using SBI unit or not are both viable and represent different techniques in making desirable PIMs.

2.1.5 PIMs with thermal or UV treatment

Several PIMs have been cross-linked to create a more robust framework via thermal treatment attempting to augment CO, plasticization resistance without prohibitively sacrificing high permeable characteristic of PIMs. Two main approaches were hypothesized to prepare cross-linked PIMs, self-cross-linking and cross-linker assisted cross-linking. Self-cross-linking was accomplished by thermal cross-linking and UV-assisted cross-linking, while cross-linker assisted cross-linking includes chemical cross-linking and metal ion cross-linking [55-59]. PIM-1 was postulated to be self-cross-linked under 300 °C to form triazine rings among nitride group with metal ions [55]. The nitride groups facilitated formation of a cross-linked network through decarboxylation cross-linking or without hydrolysis of nitride groups under moderate temperatures [57, 59]. Some researches presumed PIMs were cross-linked by adding cross-linkers, such as diazides [60, 61], beta-cyclodextrin (CD) [62] and intermolecular polycyclic aromatic hydrocarbons (PAHs) [58]. Under even higher temperature (above 530 °C), PIM-1 and hydroxyl PIMs (PIM-6FDA-OH) were pyrolyzed to fabricate CMS membranes [63].

UV exposure was utilized to enhance gas selectivities of PIMs with some corresponding loss of permeability. Several mechanisms were assumed to rationalize the function of UV via thermally rearrangement or photo-oxidation of surface [37, 49, 64-67]. The wide range of PIMs derivatives via thermal or UV treatment indeed diversifies the family of PIMs membranes by offering performance unobtainable in their untreated formats. PIMs precursors to form PIMs derivatives via thermal or UV treatment were summarized in Table 1.

To conclude neat PIMs, the aforementioned five categories of PIMs are not completely distinguished from each other, rather, some of which correlate, or even overlap, to some degree. As Table 1 demonstrates, the spectrum of PIM monomers is enormously vast and new PIMs are created by matching monomers with different functionalities. Neat PIMs membranes are straightforward to be prepared without complication caused by dopants, such as blending polymer or nanoparticles which will be illustrated in Section 2.2-2.3. Gas separation performance of neat PIMs membranes are summarized in Table 2. Certain PIMs membranes have demonstrated separation performance beyond the upper bound such as PIM-EA-TB, PIM-TMN-SBF and PIM-Trip-TB [22, 24, 30]. The processability of using PIMs was also improved by introducing flexible polyimide groups. The thermal or UV treatment on PIMs enhanced the plasticization resistance in the presence of condensable species, like CO2. Overall, neat PIMs constitute the vital part of PIMs with the most diverse monomers and functionalities [68]. Future innovation on monomer structures and functionalization of PIMs is definitely desirable and technically important.

To further push the envelope of separation upper bound and manufacturability of PIMs membranes, techniques through blending polymers or nanoparticles were excessively investigated, which will be examined in detail in following Sections 2.2 and 2.3.

2.2 Polymer Blend PIMs membranes

Blending one polymer with another polymer provides an effective alternative to boost the overall gas separation performance of polymer membranes. Since PIMs are intrinsically ultra-permeable with permeability significantly higher than conventional polymers, blending PIMs with other less permeable polymer will inevitably cause loss of flux with some increase of selectivity. When blending a less permeable polymer 2 into PIMs (polymer 1), based on model in Eq. (7), assuming $P_2 << P_1$ and a small fraction of polymer 2 in the blend (e.g. $\phi_2 < 1$), the term $\phi_2 \ln P_2 << \phi_2 \ln P_1$, which is negligible and Eq. (7) is simplified into the following:

$$\ln P_\ast \cong \phi_1 \ln P_1$$

Since $\phi_2 < 1$, so $P_\ast \cong P_1 \phi_1$, which means the permeability (P_\ast) of PIMs polymer blend is lower than the neat PIMs membranes. In rare scenarios, some extremely porous polymers were blended into PIMs membrane matrix, leading to an increase of permeability, such as hyper-crosslinked polymers (HCPs) [69].

The polymer blending technique was most employed in recent years with only a handful of literature reported in the field. PIMs were doped with conventional polymers to fabricate polymer blend PIM membranes to increase membrane mechanical properties and manufacturability. The polymers for blending were mostly polyimides, for instance, Matrimid® [15], Torlon® [11, 70], P84 [71] and Ultem® [14]. Other blending polymers include poly (ethylene glycol) (PEG) [72], Polyhedral Oligomeric Phenethyl-silsesquioxanes [73], HCPs...
As will be discussed in Section 3.3, PIMs is only soluble in particular solvents and have limited miscibility with conventional polymers, which hinders the selection of blending materials. Despite the limited spectrum of blending materials, blending allows further tailoring of PIMs membrane gas permeability and selectivity by simply mixing another complementary polymer. Blending materials and gas separation of blend PIMs membranes is described in Table 3.

Table 3 signifies, although several commercially available inexpensive polymers are blended into PIMs membranes with promising gas separation performance, a predominant challenge is that those polymers have limited miscibility with PIMs. To reach full potentials of blending technique, the loading of polymers is expected to be sufficiently high to offset high cost of PIMs, which may essentially result in a lower performance or even a failed membrane. For instance, 10% Matrimid® in PIMs caused an incremental increase of fluxes but its immiscibility with PIMs is apparent, indicative of a potential manufacturing issue [15]. While blending polymers can control membrane properties, from a pragmatic point of view, the ultimate goal of blending is to reduce the cost of membrane fabrication without prohibitive loss of flux. Increasing the loading of blending polymer without considerably losing the high separation performance of PIMs remains a technical challenge. Future work should focus on the development of new compatible inexpensive polymers with improved miscibility and loading, thereby reducing the PIMs membrane manufacturing cost while maintaining attractive separation performance.

2.3 PIMs-based mixed matrix membranes (MMMs)

Another effective technique to further push the boundary of PIMs membrane gas separation is through fabricating mixed matrix membranes. A great variety of materials, including both inorganic and organic/inorganic hybrid, were embedded into PIMs polymer matrix to facilitate gas transport due to controlled pore sizes permitting fast diffusion and molecular sieving of similarly sized gas molecules [74]. The versatile pore sizes and functionalities of doping materials allow fine tuning of gas permeabilities and selectivities. The local polymer dynamics in the mixed matrix, such as stiffness, segmental chain motion and fractional free volume, is adjustable by the embedding polymer.

<table>
<thead>
<tr>
<th>PIMs</th>
<th>Blending polymer</th>
<th>Loading (wt%)</th>
<th>Testing conditions</th>
<th>Permeability (P_i, Barrer)</th>
<th>Selectivity ($\alpha_{i/j}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H_2</td>
<td>O_2</td>
<td>CO_2</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Matrimid®</td>
<td>5</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>63.2</td>
<td>3355</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Matrimid®</td>
<td>95</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>2.6</td>
<td>12</td>
</tr>
<tr>
<td>C-PIM-1</td>
<td>Matrimid®</td>
<td>5</td>
<td>35 °C, 3.5 bars</td>
<td>1568</td>
<td>445</td>
<td>2268</td>
</tr>
<tr>
<td>C-PIM-1</td>
<td>Matrimid®</td>
<td>95</td>
<td>35 °C, 3.5 bars</td>
<td>41.8</td>
<td>3.1</td>
<td>13.6</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Ultem</td>
<td>5</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>557</td>
<td>3276</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Ultem</td>
<td>95</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>0.6</td>
<td>2.2</td>
</tr>
<tr>
<td>C-PIM-1</td>
<td>Torlon®</td>
<td>5</td>
<td>35 °C, 3.5 bars</td>
<td>1044</td>
<td>244</td>
<td>1382</td>
</tr>
<tr>
<td>C-PIM-1</td>
<td>Torlon®</td>
<td>95</td>
<td>35 °C, 3.5 bars</td>
<td>4.3</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>PIM-1</td>
<td>P84</td>
<td>10</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>-</td>
<td>2061</td>
</tr>
<tr>
<td>PIM-1</td>
<td>P84</td>
<td>70</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>-</td>
<td>7.0</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PEG</td>
<td>0.5</td>
<td>30 °C, 4-12 bars</td>
<td>-</td>
<td>-</td>
<td>3125</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PEG</td>
<td>5</td>
<td>30 °C, 4-12 bars</td>
<td>-</td>
<td>-</td>
<td>2551</td>
</tr>
<tr>
<td>PIM-1</td>
<td>POSS-PEG</td>
<td>1</td>
<td>30 °C, 1 bar</td>
<td>-</td>
<td>-</td>
<td>3360</td>
</tr>
<tr>
<td>PIM-1</td>
<td>POSS-PEG</td>
<td>10</td>
<td>30 °C, 1 bar</td>
<td>-</td>
<td>-</td>
<td>1309</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PPSU</td>
<td>5</td>
<td>35 °C, 3.5 bars</td>
<td>2783</td>
<td>1047</td>
<td>5763</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PPSU</td>
<td>15</td>
<td>35 °C, 3.5 bars</td>
<td>1670</td>
<td>599</td>
<td>2550</td>
</tr>
<tr>
<td>PIM-1</td>
<td>HCP</td>
<td>4.76</td>
<td>25 °C, 2 bars</td>
<td>-</td>
<td>-</td>
<td>10125</td>
</tr>
<tr>
<td>PIM-1</td>
<td>HCP</td>
<td>16.67</td>
<td>25 °C, 2 bars</td>
<td>-</td>
<td>-</td>
<td>19086</td>
</tr>
<tr>
<td>Matrimid®</td>
<td></td>
<td>-</td>
<td>35 °C, 3.5 bars</td>
<td>-</td>
<td>2.1</td>
<td>10</td>
</tr>
<tr>
<td>Polysulfone</td>
<td></td>
<td>-</td>
<td>35 °C, 10 bars</td>
<td>14.0</td>
<td>1.4</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table 3. Gas permeation properties of polymer blend PIMs membranes, compared with Matrimid® and polysulfone. Maximum and minimum loading of polymers are selected if different loadings were studied. All data are adapted based on pure gas permeation unless specified. Notes: C-PIM-1: Carboxylated-PIM-1; PPSU: Polyphenylenesulfone.
Inorganic fillers for mixed matrix membranes are generally non-porous, creating free volume in the mixed matrix membranes to increase gas permeability. Silica was firstly reported as an inorganic filling PIMs mixed matrix membranes due to its small size and ready availability [75, 76]. It was also employed in cross-linked PIMs [77]. Since the usage of silica, carbon nanotubes and carbon fibers were doped into PIMs membranes [78-80]. As a new generation of inorganics, graphene was also incorporated in PIMs MMMs [81]. Metal ions were added in PIMs as a cross-linking agent to modulate gas separation performance by creating a cross-linked network to enhance plasticization resistance [82]. Ionic liquids have also been mixed into PIMs membranes [83].

Metal-organic frameworks (MOFs) have emerged as an important hybrid nanocrystal with broad applications in areas like gas separation, gas storage, catalysis, gas sensor and so on. MOFs are porous crystals, and have precisely controlled pore sizes, enabling facilitated gas diffusion and specific sieving of similarly sized gas molecules. ZIF-8 is a relatively new class of MOFs with extraordinary gas separation properties and strong chemical and thermal stability. The pore size of ZIF-8 is 3.4 Å, making it an excellent molecular sieve for separating gas pairs like CO₂/CH₄ and CO₂/N₂. The kinetic diameters of CO₂, N₂ and CH₄ are 3.3 Å, 3.6 Å, and 3.8 Å respectively, near the aperture size of ZIF-8. ZIF-8 was used in preparing all kinds of MMMs, including PIMs MMMs [77, 84]. In addition, UiO-66 is another family of MOFs with a relatively large aperture (6.0 Å) and stable in harsh chemical and thermal conditions. It was recognized as an outstanding dispersant in fabricating PIMs mixed matrix membranes to greatly enhance gas permeability without significant loss of selectivity [85-88]. Other MOFs were also mixed into PIMs MMMs, such as MIL101, ZIF-71, HKUST-1 and CuBDC [89-92].

The last kind of doping agent to prepare PIMs MMMs is the organic solid. The organic solid is referring a polymer with a network structure insoluble in common solvents, like THF. Blending organic solids into membranes mainly increase the porosity, thereby improving gas permeability. As a typical organic solid, COF is a porous 2D or 3D crystalline with diverse application in fields including gas storage, energy harvesting, CO₂ capture and so on. COF was recently doped into PIMs to fabricate MMMs with enhanced permeability [93].

Overall, the MMM technology enables a wide range selection of filling materials into PIMs membranes and further tuning membrane properties. Fillers in PIMs MMMs and their gas separation are depicted in Table 4. As Table 4 depicts, mixed matrix membranes represent an advanced hybrid membrane configuration with unique and synergistic gas separation properties, some of which have surpassed the upper bound appreciably, as will be discussed in Figure 8. Despite the enhancement of separation performance, key challenges associated with MMMs technology include interfacial adhesion and particulate dispersion, which have been immensely reviewed in literatures [17].

To summarize the three PIMs membranes, numerous and unique monomers and tunable functionalities have been extensively investigated in order to prepare novel PIMs membranes. They have been broadly used to prepare a large spectrum of membranes, including both neat and hybrid membranes, many of which have overcome the upper bound limit. Gas separation of PIMs-based membranes are plotted in Figure 8, compared with some conventional polymeric membranes, such polysulfone [94] and Matrimid® [95].

2.4 PIMs hollow fiber membranes

Primarily, researchers have concentrated on flat-sheet dense film format of PIMs membranes for academic research. However, hollow fiber membranes are the industrially preferred membrane format for gas separations due to their high surface-volume ratio, as compared to flat-sheet membranes. Hollow fiber membranes possess a thin skin layer with an open porous supporting layer underneath the skin in a tubular morphology, as shown in Figure 9. A gas mixture is fed either through the bore side or shell side of the hollow fiber, and the gases permeate through the membrane wall and are separated in the permeate side. Such a unique feature of membrane configuration has positioned hollow fibers the industrial standard membrane products (or so-called hollow fiber membrane...
bundles). Hollow fibers are often manufactured through a phase-invasion dry-jet wet-quench spinning processes [11].

To date, literature reports of PIMs hollow fiber membranes are very limited. Matrimid® and Ultem were blended with PIM-1 to prepare polymer blend hollow fibers membranes [96, 97]. Neat PIM-1 hollow fiber membranes were also fabricated [98]. Gas separation properties of PIM-1 related membranes and membranes from other polymers are compared in Table 5. Undoubtedly, more research is deserved to achieve PIMs hollow fiber membranes and their scale-up if they are intended for pragmatic application of gas separations in a large scale.

3 CHALLENGES OF PIMS MEMBRANES AND MITIGATION THEREOF

PIMs-based membranes have exhibited huge potential for gas separations, some of which have surpassed the Robeson upper bound, as depicted in Figure 8. Despite their inherently high gas separation potentials, there are challenges associated with developing workable PIMs for separations. Besides the technical difficulties briefed in Section 2, future work should be devoted in following key areas to advance PIMs technology to a higher level. These key challenges are discussed below.

3.1 Physical aging

Physical aging is a prominent issue in porous polymer membranes; aging is a catch-all term that describes the gradual loss of permeability and performance of these systems over time. Aging is believed to be caused by the non-equilibrium nature of the glassy polymer with unrelaxed fractional free volume, which tends to shrink to a more equilibrium (condensed) state over time. Physical aging is an apparent challenge for PIMs membranes due to their high fractional free volume, which undermines the applicability of PIMs for membrane separation. Rapid loss of fluxes leads to unstable performance, which poses another practical operational variable for process control as a steady state of separation is interrupted by the service time. Commercial membranes also experience physical aging, however, the degree of aging of which is significantly lower than that of PIMs.

Many researchers have investigated the physical aging of PIMs [99-101]. Budd et al found a significant loss of gas permeability of PIM-1 in about a week with some increase of gas permselectivity [99]. Tiwari et al also observed rapid loss of O₂ permeability of PIM-1 with data shown in Figure 10. Much work has focused on attempts to suppress rapid physical aging of PIMs membranes with some successes achieved in retarding the aging. Approaches to mitigate PIMs aging include UV treatment [67], thermal cross-linking [55] and doping with porous materials, such as porous aromatic framework (PAF) [102], HCP [69], Polyhedral Oligomeric Silsesquioxane (POSS) [103]. Beta-cyclodextrin (CD) was also embedded...
Table 4. Gas permeation properties of PIMs MMMs. The maximum loading or loading yielding highest CO$_2$ permeability was selected if multiple loadings were reported. All data are adapted based on pure gas permeation unless specified. Loading are referring wt% unless specified (*vol%).

<table>
<thead>
<tr>
<th>PIMs</th>
<th>Filler</th>
<th>Loading</th>
<th>Testing conditions</th>
<th>Permeability (P_i, Barrer)</th>
<th>Selectivity ($\alpha_{i/j} = P_i/P_j$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H$_2$</td>
<td>He</td>
<td>O$_2$</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Silica 23.5</td>
<td>23°C, 3.4 bars</td>
<td>7190</td>
<td>2940</td>
<td>3730</td>
<td>13400</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Silica 40</td>
<td>22°C, 4 bars</td>
<td>5544</td>
<td>-</td>
<td>1734</td>
<td>8505</td>
</tr>
<tr>
<td>TOX-</td>
<td>Silica 20</td>
<td>22°C, 4 bars, crosslinked</td>
<td>2816</td>
<td>-</td>
<td>603</td>
<td>2615</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Silicalite-1 35.5</td>
<td>25°C, 1 bar</td>
<td>894</td>
<td>-</td>
<td>351</td>
<td>2530</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Carbon nanotube 2</td>
<td>27°C, 2 bars</td>
<td>-</td>
<td>605</td>
<td>7090</td>
<td>-</td>
</tr>
<tr>
<td>PIM-1</td>
<td>g-C$_3$N$_4$ 1</td>
<td>30°C, 2 bars, alcohol treated</td>
<td>5720</td>
<td>-</td>
<td>10528</td>
<td>-</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Ion liquid 10</td>
<td>30°C, 0.5 bar</td>
<td>-</td>
<td>101</td>
<td>812</td>
<td>-</td>
</tr>
<tr>
<td>PIM-1</td>
<td>ZIF-8 43*</td>
<td>20-22°C, 1 bar, ethanol treated</td>
<td>14430</td>
<td>5990</td>
<td>5810</td>
<td>19350</td>
</tr>
<tr>
<td>PIM-1</td>
<td>ZIF-8 30</td>
<td>22°C, 4 bars</td>
<td>5456</td>
<td>-</td>
<td>1452</td>
<td>6424</td>
</tr>
<tr>
<td>PIM-1</td>
<td>ZIF-8 20</td>
<td>22°C, 4 bars, crosslinked</td>
<td>3465</td>
<td>-</td>
<td>800</td>
<td>3944</td>
</tr>
<tr>
<td>PIM-1</td>
<td>ZIF-8 10 cycles</td>
<td>25°C, 1 bar</td>
<td>76</td>
<td>59</td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td>PIM-1</td>
<td>HKUST-1 5 days</td>
<td>25°C, 1 bar</td>
<td>360</td>
<td>222</td>
<td>74.8</td>
<td>453</td>
</tr>
<tr>
<td>PIM-1</td>
<td>MIL-101 33*</td>
<td>NA</td>
<td>-</td>
<td>1200</td>
<td>1010</td>
<td>8440</td>
</tr>
<tr>
<td>PIM-1</td>
<td>ZIF-7 30</td>
<td>35°C, 3.5 bars</td>
<td>-</td>
<td>1602</td>
<td>8377</td>
<td>-</td>
</tr>
<tr>
<td>PIM-1</td>
<td>CuBDC 10</td>
<td>25°C, 1 bar, mixed gas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>407</td>
</tr>
<tr>
<td>PIM-1</td>
<td>UiO-66 4.6</td>
<td>25°C, 2 bars</td>
<td>3590</td>
<td>-</td>
<td>5340</td>
<td>14.4</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Ti UiO-66 13.3</td>
<td>25°C, 2 bars</td>
<td>8380</td>
<td>-</td>
<td>14740</td>
<td>8.0</td>
</tr>
<tr>
<td>PIM-1</td>
<td>UiO-66 28.6</td>
<td>25°C, 1 bar</td>
<td>6280</td>
<td>2380</td>
<td>2150</td>
<td>10900</td>
</tr>
<tr>
<td>PIM-1</td>
<td>UiO-66 30</td>
<td>35°C, 1 bar</td>
<td>8420</td>
<td>-</td>
<td>9420</td>
<td>-</td>
</tr>
<tr>
<td>PIM-1</td>
<td>UiO-66 20</td>
<td>25°C, 4 bars</td>
<td>2730</td>
<td>-</td>
<td>1370</td>
<td>6981</td>
</tr>
<tr>
<td>PIM-1</td>
<td>COF 15</td>
<td>30°C, 2 bars</td>
<td>-</td>
<td>-</td>
<td>7954</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5. Hollow fiber PIMs membranes gas separation performance based on pure gas permeation unless specified, compared to Matrimid®, Ultem, polysulfone and Propane Diol Monoester Cross-linkable (PDMC) polymer. Hollow fiber modules were not post-treated to reflect intrinsic gas separation properties. All data are based on pure gas permeation. l refers the skin layer thickness of hollow fiber membranes.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Polymer composition</th>
<th>Testing conditions</th>
<th>Permeance (P_i/l, GPU)</th>
<th>Selectivity ($\alpha_{i/j} = P_i/l(P_j/l)$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM-1</td>
<td>PIM-1: Matrimid® (5:95)</td>
<td>Ambient temperature, 1 bar</td>
<td>39.5</td>
<td>172.9</td>
<td>5.4</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PIM-1: Matrimid® (15:85)</td>
<td>Ambient temperature, 1 bar</td>
<td>33.5</td>
<td>413.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Matrimid®</td>
<td>Neat polymer</td>
<td>Ambient temperature, 1 bar</td>
<td>16.9</td>
<td>86.3</td>
<td>6.5</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PIM-1: Ultem (5:95)</td>
<td>Ambient temperature, 3 bars</td>
<td>8.2</td>
<td>33.9</td>
<td>7.2</td>
</tr>
<tr>
<td>PIM-1</td>
<td>PIM-1: Ultem (15:85)</td>
<td>Ambient temperature, 3 bars</td>
<td>13.0</td>
<td>49.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Ultem</td>
<td>Neat polymer</td>
<td>Ambient temperature, 3 bars</td>
<td>5.2</td>
<td>24.1</td>
<td>7.4</td>
</tr>
<tr>
<td>PIM-1</td>
<td>Neat polymer</td>
<td>35°C, 6.9 bars</td>
<td>60</td>
<td>360</td>
<td>4.6</td>
</tr>
<tr>
<td>Polysulfone</td>
<td>Neat polymer</td>
<td>25°C, 5 bars</td>
<td>14.8</td>
<td>78.1</td>
<td>6.5</td>
</tr>
<tr>
<td>PDMC</td>
<td>Neat polymer</td>
<td>35°C, 6.9 bars</td>
<td>63</td>
<td>-</td>
<td>4.6</td>
</tr>
</tbody>
</table>
into PIMs polymer chains via chemical reaction to increase aging resistance\[104\]. These treatments aim to stiffen the polymer network and make the membrane more robust against aging, which, however, may increase the rigidity of PIMs - a potential issue for making mechanically flexible membranes. This fact notwithstanding, those techniques were found effective in deflecting aging curves of PIMs membranes and maintaining a high performance to an extended period of time.

3.2 Plasticization

Plasticization refers to a characteristic of polymeric membranes when gas fluxes increase with feeding pressures with a simultaneous loss of selectivity due to polymer swelling in the presence of highly sorbing components in the feed. As polymer chains are flexible, the sorbing component, also called plasticizer, dilates polymer chains, increasing the fractional free volume, shifting the polymer towards a rubberier regime, and causing a loss of separation efficacy. The species that cause plasticization include CO\textsubscript{2} \[101\] and certain hydrocarbons \[105\]. For instance, literatures studied effects of feeding pressures on hydrocarbon permeabilities of PIM-1 as Figure 11 shows. The permeabilities of C\textsubscript{4}H\textsubscript{6}, C\textsubscript{6}H\textsubscript{6}, C\textsubscript{7}H\textsubscript{8}, and C\textsubscript{8}H\textsubscript{10} rise with the feeding pressures, a strong indication of plasticization \[105\].

Multiple methods were postulated to hamper plasticization of PIMs membranes, such as cross-linking \[61\] and blending with POSS \[103\]. In particular, cross-linking is a straightforward approach to overcome plasticization accomplished by techniques introduced in Section 2.1.5 \[106\]. Despite the intrinsic rigidity of PIMs, plasticization is a practical issue that needs to be appropriately addressed for PIMs membranes, especially in the case of high pressure operation conditions.

3.3 Processability

PIM-1 is soluble in several organic solvents such as tetrahydrofuran (THF), chloroform and dichloromethane, which are therefore commonly used for flat-sheet membrane casting and hollow fiber membrane spinning. For example, PIM-1 was dissolved in THF and spun into hollow fiber membranes \[98\]. However, PIM-1 is insoluble in some polar solvents, such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAc) and dimethylformamide (DMF) \[107\].

The insolubility of NMP or DMAc poses a challenge for processing PIMs into industrially relevant hollow fiber membranes since such solvents are often used for spinning hollow fibers \[108\]. However, researchers have identified approaches to modify PIMs to improve their solubility. Du et al reported tetrazole and hydrolyzed PIM-1, which was soluble in NMP, making it possible to fabricate PIMs-based membranes from NMP solution \[59, 107\]. Mason et al explored thioamide modification of PIM-1 polymer, which was soluble in polar aprotic solvents such as DMAc, DMF and Dimethyl Sulfoxide \[109\]. This fact notwithstanding, gas fluxes of modified PIM-1 were found relatively lower than untreated PIM-1 \[59, 107, 109\]. Future work should address the permeability loss when increasing solubility in solvents by functionalizing PIMs.

3.4 Structure-property relationship

PIMs possess complicated microscale orientations, especially in the case of non-SBI-centered PIMs with bulky side groups, the pendant moieties can affect properties of PIMs appreciably. The irregular packing of polymer chains in ladder-like PIMs makes it difficult to predict the gas separation performance for a given structure. The large scattering permeability of PIM-1 shown in Table 1 is an evidence of the challenge of obtaining identical gas separation properties of PIM-1 membrane from the same monomer. Potential reasons for the variability of permeation is that the permeability of PIMs is dependent on film thickness, post-treatment method (methanol or water soak), casting solution and of course, aging time \[101\].

It is important to note that PIMs, given that they are a kind of porous glassy polymer, have an inherent non-equilibrium behavior with a large amount of fractional free volume. As Section 3.1 discussed, the rapid aging caused by the non-equilibrium nature of PIMs suggests that the properties of PIMs are time-sensitive, which is another key parameter to consider when studying gas permeabilities of PIMs. Those aforementioned factors severely complicate the structure-property relationship in PIMs. It is, hence, difficult to unambiguously correlate the complicated relationship between the monomer structure, pore sizes, polymer fractional free volume and membrane gas separation properties \[3\].

Regardless of the challenge of correlating structure and property, several techniques were employed to explore PIMs microstructure evolution whilst examining gas separation properties. The pore size distributions and free volume in PIMs are often studied using Positron Annihilation Lifetime Spectroscopy (PALS), nitrogen adsorption, and molecular simulation \[3, 99, 110, 111\]. PALS is a non-destructive spectroscopy method to study the free volume of polymers. It is a useful technique to correlate the size of void volume of polymers with the lifetime of positronium. Pore size was also measured by using X-ray diffraction, including Small-angle X-ray scattering and Wide-angle X-ray scattering \[112\]. Future research in this field is essentially critical to understand PIMs in a molecular level and guide design of PIMs as a cutting-edge gas separation platform.

4 SUMMARY AND OUTLOOK

The discovery and development of PIMs opens the door into a burgeoning field with the potential to offer next-generation membranes with separation performance outcompeting conventional polymeric membranes. During the past two decades, PIMs have established themselves as an important class of microporous materials with hundreds of related papers and patent applications published. PIMs are widely recognized as...
one of the most intrinsically permeable membrane materials, along with thermally rearranged polymers, and carbon molecular sieves. They have demonstrated superior high separation productivities with moderate selectivities crossing the Robeson upper bound remarkably.

Despite the intrinsically high separation productivity, there exist a number of technical barriers in PIM membranes, such as physical aging, plasticization, processability, and more fundamental issues such as the lack of detailed structure-property relationships. Opportunities rely on properly overcoming those challenges. To date, studies on PIMs have been primarily focusing on dense film membranes. Only a handful papers or patents discussed the development of hollow fiber PIMs membranes. The fact that PIMs are not readily soluble in common solvents, like NMP and DMAc, may undermine the spinability and manufacturability of PIMs into hollow fiber membranes, potentially hindering successful applicability of PIMs membranes in an industrial scale. Although PIMs have relatively lower selectivities compared to other glassy polymers, it remains promising to incorporate PIMs with molecular sieving materials, such as selective polymers and inorganic fillers, to establish a percolative network to achieve both high flux and selectivity. It is foreseeable that PIMs will become a key player in membrane community when those issues can be successfully addressed.

Acknowledgements

Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy and by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy contract no. DE-AC02-05CH11231. This material is based upon work supported by the Department of Energy under Award Number DE-IA0000018. We thank Dr. Chih-Hao Hsu for his valuable comments on this paper.

Notes

The authors declare no competing financial interest.

References

[22] I. Rose; C. G. Bezzu; M. Carta; B. Comesana-Gandara; E. Lasseguette; M. C. Ferrari; P. Bernardo; G. Clarizia; A. Fuoco; J. C.

Xiaohua Ma; Mahmoud A. Abdulhamid; Ingo Pinnau, Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Tröger’s Base-Derived Dianhydrides for Membrane Gas Separation Applications. Macromolecules. 50(15), 5850 (2017). doi:10.1021/acs.macromol.7b01054

Xiaohua Ma; Raja Swaidan; Youssef Belmakhbout; Yihan Zhu; Eric Litwiller; Mustapha Jouiaud; Ingo Pinnau; Yu Han, Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. Macromolecules. 45(9), 3841 (2012). doi:10.1021/ma300549m

Zhenggong Wang; Dong Wang; Feng Zhang; Jian Jin, Tröger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. ACS Macro Letters. 3(7), 597 (2014). doi:10.1021/mz400184z

Michael Lee; C. Grazia Bezzu; Mariolino Carta; Paola Bernardo; Gabriele Clarizia; Johannes C. Jansen; Neil B. McKeown, Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity. Macromolecules. 49(11), 4147 (2016). doi:10.1021/acs.macromol.6b00351

Yongbing Zhuang; Jong Geun Seong; Yu Seong Do; Won Hee Jo; Zhaoliang Cui; Jongmyeong Lee; Young Moo Lee; Michael D. Guiver, Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation. Macromolecules. 47(10), 3254 (2014). doi:10.1021/ma5007073

Michael Lee; C. Grazia Bezzu; Mariolino Carta; Paola Bernardo; Gabriele Clarizia; Johannes C. Jansen; Neil B. McKeown, Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity. Macromolecules. 49(11), 4147 (2016). doi:10.1021/acs.macromol.6b00351

Yongbing Zhuang; Jong Geun Seong; Yu Seong Do; Won Hee Jo; Zhaoliang Cui; Jongmyeong Lee; Young Moo Lee; Michael D. Guiver, Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation. Macromolecules. 47(10), 3254 (2014). doi:10.1021/ma5007073

Michael Lee; C. Grazia Bezzu; Mariolino Carta; Paola Bernardo; Gabriele Clarizia; Johannes C. Jansen; Neil B. McKeown, Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity. Macromolecules. 49(11), 4147 (2016). doi:10.1021/acs.macromol.6b00351

Zhenggong Wang; Dong Wang; Jian Jin, Microporous Polyimides with Rationally Designed Chain Structure Achieving High-Per-

Muntazim Munir Khan; Gisela Bengtson; Sergey Shishatskii; Bahadir N. Gacal; Md Mushfique Rahaman; Silvio Neumann; Volkmar Filiz; Volker Abetz, Cross-linking of Polymer of Intrinsic Microporosity (PIM-1) and modify its gas sorption properties. Journal of Materials Chemistry A. 3(9), 4853 (2015).

Ratvijitvech; Ge Cheng; Rob Clowes; Dave J. Adams; Tom Hasell; Mingming Hua; Xiaoyao Tan; Yuzhong Zhang, High performance microporous polymeric membranes for advanced hydrogen purification and production. Journal of Membrane Science. 462, 119 (2014). doi:10.1016/j.memsci.2014.03.046

Peyman Salehian; Wai Fen Yong; Tai-Shung Chung, Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. Journal of Membrane Science. 518, 110 (2016). doi:10.1016/j.memsci.2016.06.027

T. Mita; R. S. Bhavsar; D. J. Adams; P. M. Budd; A. I. Cooper, PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chem Comm (Camb). 52(32), 5581 (2016). doi:10.1039/c6cc00261g

Wai Fen Yong; Fu Yun Li; Tai Shung Chung; Yen Wah Tong, Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. Journal of Membrane Science. 462, 119 (2014). doi:10.1016/j.memsci.2014.03.046

Christopher R. Mason; Maria Giovanna Buonomenna; Giovanni
Muhannad R. Khdhayyer; Elisa Esposito; Alessio Fuoco; Mar -
pur.2016.09.036
[88] A. Y. Alentiev; G. N. Bondarenko; Y. V. Kostina; V. P. Shan-
tarovich; S. N. Klyamkin; K. A. Kovalenko; Y. P. Yam-
[89] A. Fuoco; M. R. Khddhayer; M. P. Attfield; E. Esposito; J. C. Jansen; P. M. Budd, Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. Mem-
[91] A. Fuoco; M. R. Khddhayer; M. P. Attfield; E. Esposito; J. C. Jansen; P. M. Budd, Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. Mem-
[93] Xingyu Wu; Zhizhang Tian; Shaofei Wang; Dongdong Peng; Leixin Yang; Yingzhen Wu; Qingxing Xin; Hong Wu; Zhongyi Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Journal of Membrane Science. 528, 273 (2017). doi:10.1016/j.memsci.2017.01.042
7889(03)00245-x
7889(03)00245-x
[99] P. Budd; N. McKeown; B. Ghanem; K. Msayib; D. Fritsch; L. Starannikova; N. Belov; O. Sanfirova; Y. Yampolskii; V. Shan-
tarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodi-
[100] P. Bernardino; F. Bazzarelli; F. Tasselli; G. Clarizia; C. R. Ma-
son; L. Maynard-Atem; P. M. Budd; M. Lanè; K. Pilnäcke; O. Vopi-
ika; K. Friess; D. Fritsch; Yu P. Yampolskii; V. Shantarovich; J. C. Jansen, Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer. 113, 283 (2017). doi:10.1016/j.polymer.2016.10.040
[101] Rajkiran R. Tiwari; Jianyong Jin; B. D. Freeman; D. R. Paul, Publication of RSC Ad-

[113] Canghai Ma; Chen Zhang; Ying Labreche; Shilu Fu; Lu Liu; William J. Koros, Thin-skinned intrinsically defect-free asymmetric mono-esterified hollow fiber precursors for crosslinkable polyimide gas separation membranes. Journal of Membrane Science. 493, 252 (2015). doi:10.1016/j.memsci.2015.06.018

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License. © The Author(s) 2018